用户名: 密码: 验证码: 点击换另外一幅          客服电话:0311-80927349设为主页  加入收藏  
   所有  文献  资讯  行情
 

客服:点击这里给我发消息 点击这里给我发消息
焦化技术  炼铁技术 炼钢技术  烧结技术 球团技术 轧钢技术 国外技术 质量标准 操作规程 企业名录 冶金专利 视频中心 兑换中心 会员单位
您现在的位置:技术文献 >> 钢铁知识 >> 公共阅览室 >> 综合
基于改进的最小二乘支持向量机的退火炉内带钢延伸量预测
发表时间:[2015-07-23]  作者:周 鑫,王 超,杨 琦,张宇献  编辑录入:小铬  点击数:210

内容简介

摘要:带钢在退火炉内进行长时间加热的过程中,由于炉内温度、张力以及带钢运行速度等变量间具有多重相关性且存在生产数据噪声,从而难以准确预测炉内带钢的延伸量。本文提出了一种基于遗传算法的BP神经网络理论(GA-BP神经网络)与最小二乘支持向量机(LSSVM)理论相结合的算法用于目标函数拟合,该算法兼顾最小二乘支持向量机的全局与局部拟合能力,有效避免算法陷入局部最优的缺点,利用改进的BP神经网络算法优化选择LSSVM模型的惩罚因子和核函数参数,以避免人为选择参数的盲目性,使LSSVM具有更好的泛化能力和预测精度。将该方法应用到退火炉内带钢的延伸量预测,通过现场生产数据仿真模拟进行非线性函数估计,结果表明:本文所提出的方法具有良好的预测精度,可以应用于实际生产。关键词:带钢延伸量;软测量;遗传算法;BP神经网络;最小二乘支持向量机下载全文——基于改进的最小二乘支持向量机的退火炉内带钢延伸量预测_.pdf

友情提示

文章权限:高级会员
消耗金币:5
此文章需要 高级会员 及以上权限才可阅读!普通会员阅读下载本文档需要登录,并付出相应金币(普通会员注册即赠送20金币)。如何获取金币?
如果您还没有注册,您可以 点此 注册!
如果您已注册还没有登录,您可以在下面登录!
用户名:
密 码:
验证码: 点击换另外一幅
相关文章
热点排行
  • 扫一扫,访问冶金之家
更多友情链接      申请友情链接,请加QQ:1525077243
更多合作单位
版权所有:冶金之家 www.GTjia.com 未经许可不得转载  
客服电话0311-80927349   客服传真0311-80927348  客服邮箱gtjiacom@126.com
客服:点击这里给我发消息  客服:点击这里给我发消息  客服:点击这里给我发消息
[冶金之家QQ群] 炼铁技术交流群:53122098 炼钢技术交流群:116793970
工信部网站备案/许可证号:冀ICP备11014312号-1
免责声明:本站部分内容来自互联网 不承诺拥有其版权 如有异议请联系本站 将在第一时间删除相关内容。