用户名: 密码: 验证码: 点击换另外一幅          客服电话:0311-80927349设为主页  加入收藏  
   所有  文献  资讯  行情
 

客服:点击这里给我发消息 点击这里给我发消息
焦化技术  炼铁技术 炼钢技术  烧结技术 球团技术 轧钢技术 国外技术 质量标准 操作规程 企业名录 冶金专利 视频中心 兑换中心 会员单位
您现在的位置:技术文献 >> 钢铁知识 >> 公共阅览室 >> 轧钢
带钢悬垂曲线方程组及其约束条件
发表时间:[2007-11-05]  作者:  编辑录入:admin  点击数:1811

摘要:带钢悬垂是带钢连续处理线中常见的情形,从数学和力学方面对带钢悬垂曲线函数和带钢张力进行分析,推导出了带钢悬垂曲线方程组,同时给出了使用该方程组的2个约束条件。在带钢连续处理机组设计时,可以参考使用。   

 

关键词:带钢;悬垂曲线方程组;约束条件

 

1  前言

    带钢悬垂是带钢处理线中常见的情形,对于同一种规格的带钢,不同的带钢张力对应不同的悬垂曲线。目前对悬垂曲线的形状尚没有实用的计算方法,而没有曲线则不能精确地反映带钢张力对支点处的作用力;而且,在带钢悬垂段布置与带钢高度有关的工艺设备时就难以精确定位。为此,研究了带钢张力与悬垂曲线的对应关系,并提出了设计计算方法,为带钢连续处理机组的优化设计和控制提供了依据。

 

2带钢悬垂曲线方程组

21悬垂曲线函数的建立

    为推导悬垂曲线函数,首先建立直角坐标系,如图1所示。悬垂左支点即带钢与转向辊的切点O为坐标原点(00),实际上该切点的位置是随带钢曲线的变化而变化的,为了方便计算,取转向辊的最高点为坐标原点;悬垂右支点即带钢与转向辊的切点为Q(x1y2),同样,取右端转向辊的最高点为右支点坐标。设带钢的悬垂曲线函数为y=ax2+bx+c,未知的谷底为P(x1y1),悬垂曲线函数表达式为:


22悬垂带钢长度

    对式(1)求导,并在[0x2][0x1]区间内进行积分,得到两支点间的带钢长度l及左支点到谷底P点的带钢长度l

 


23计算悬垂曲线谷底P点的坐标

    对式(1)求导,将悬垂曲线谷底P点的坐标值x1y1代人,得:

 


24左右两支点的垂直支反力

241悬垂带钢的质量

  m=l·g·qm1= l·g·qm2=mm1(6)式中,m为悬垂带钢的质量,kgl为悬垂带钢长度,mq为单位长度带钢质量,kgmm1为左支点O到谷底P的带钢质量,kgl为左支点O到谷底P悬垂带钢长度,mm2为谷底P到支点Q的带钢质量,kg

242带钢重心坐标的求解

    整个带钢的重力为mg,其作用点(即重心)W(x3y3),如图2所示。设在带钢悬垂态下微段dx上的带钢质量为q′,q′与该微段dx处于悬垂曲线上的位置有关,其分布状况如图2所示。q′与单位长度带钢的质量q的关系为:

                                 q

q=―――――――             (7)

    cos(arctan y)

式中,q为微段dx上的带钢质量,kgmq为单位长度的带钢质量,kgm

    因为各微段dx相对带钢重点的合面矩为零,所以有:

  


243左右支点的垂直支反力

    为了简化思路,设定带钢不产生抵抗弯矩,即带钢本身的抵抗弯矩为0,因此有:

    FOy·g·x2=mg·g·(x2x3)

    FQy·g·x2=mg·x3    (10)

    将式(9)代人式(10)有:

    FOy=ml gFQy=m2g    (11)

    上述式中,FOyFQy分别为带钢左、右支点的垂直支反力,N


25  带钢张力

    当两端支点位置固定后,带钢两端张力和带钢单位质量决定着曲线形状,带钢两端张力的方向是沿带钢的切线方向,两端支点上的垂直支反力实质上是带钢张力在垂直方向上的分量。因此:

    FO=FOyyO    (12)

yO为带钢左支点切线的斜率,yO=dy/dx=b

所以  Fo=FOyb=m1 gb             (13)

同理  FQ=m2ggx2(2y2bx2)     (14)

上述式中,FOFQ分别为左、右支点处带钢的张力,Nb为带钢悬垂曲线函数中无因次量参数。

26左右支点同高的带钢悬垂曲线方程

    当左右支点高度一致,此时Q点坐标为(x20),将该坐标值代入以上各式,即可求出带钢悬垂曲线方程。

 

3  带钢悬垂模型使用的两个约束条件

    前面推导模型的基础是假设带钢不产生抵抗弯矩,而实际情况并非如此,任何一种带钢只要存在断面和材料强度,必然存在固有的抵抗弯矩。但是,对于两端等高且没有水平张力的带钢(简称自由带钢),在带钢谷底处,当带钢自重产生的弯矩使带钢发生弹性变形,随着两支点距离的增大,悬垂带钢谷底处变形将越来越大。因此不难理解,带钢悬垂模型适用范围的约束条件应该是自由带钢发生的变形程度,反之,当带钢左右两支点距离小到一定范围时,带钢自重在带钢谷底处产生弯矩小于带钢抵抗弯矩,则此时带钢的受力情形就变成了梁的变形行为。

31  带钢的变形曲率极限

    纯弯曲时带钢的纵向纤维发生弯曲,如图3所示,根据带钢的几何变形方程得:

                   H

 εt=±—-

     2ρ

(15)

式中,ρ为在悬垂带钢谷底处带钢中性面的曲率半径,mH为带钢厚度,mεt为带钢表面的弹性应变值。


    根据虎克定律有εttE,代入式(15)得:

      1           t

  =±------           (16)

   ρ     HE

 

式中,σt为弹性应力,MPaE为材料的弹性模量,MPa

    从数学可知悬垂带钢曲率几何方程,并且在谷底处y=0,因此带钢几何曲率为:

   

  1                      y

  ——=±——————                     (17)

  ρ几何    (1+(y)2)3/2

 

  根据前面的分析,在悬垂带钢谷底处带钢自重产生的弯矩要大于带钢的抵抗弯矩,此处的几何曲率就必须大于力学曲率,因此将式(16)和式(17)联立得不等式:

             t

 y”≥——         (18)

              HE

  对式(1)进行2次求导,并代入式(18),得:

       2(y2bx2)                  t

  ————————≥——          (19)

       X2                       HE

    对于自由带钢,y2=yO=0,整理后得:

                            σt

b≤- -----                 (20)

                 HE

    设带钢表面的弹性变形应力σt和材料的屈服强度σs的比值为φ,因此有:

                                         φσs

b≤— ―――――   (21)

                      HE

  (21)表明,在求解带钢悬垂曲线方程组时,b必须小于0

32悬垂谷底的带钢极限弯矩

    带钢自重在带钢谷底产生最大弯矩,当此处带钢表面的弯曲应力超过材料屈服强度时,带钢自重产生的弯矩将大于带钢的抵抗弯矩,可得:

  


式中,L’为悬垂带钢最小跨度,mH为带钢厚度;σs为带钢屈服强度,MPa

    (22)表明,在求解带钢悬垂曲线方程组时,x2L′。

    综上所述,带钢悬垂曲线的求解如图4所示。


4  结论

    (1)建立了带钢悬垂曲线方程,确定了带钢张力与带钢悬垂曲线的关系。

    (2)给出了带钢悬垂曲线方程的2个约束条件,满足该约束条件,带钢悬垂曲线方程可用于工程设计。

相关文章
热点排行
  • 扫一扫,访问冶金之家
更多友情链接      申请友情链接,请加QQ:1525077243
更多合作单位
版权所有:冶金之家 www.GTjia.com 未经许可不得转载  
客服电话0311-80927349   客服传真0311-80927348  客服邮箱gtjiacom@126.com
客服:点击这里给我发消息  客服:点击这里给我发消息  客服:点击这里给我发消息
[冶金之家QQ群] 炼铁技术交流群:53122098 炼钢技术交流群:116793970
工信部网站备案/许可证号:冀ICP备11014312号-1
免责声明:本站部分内容来自互联网 不承诺拥有其版权 如有异议请联系本站 将在第一时间删除相关内容。