用户名: 密码: 验证码: 点击换另外一幅          客服电话:0311-80927349设为主页  加入收藏  
   所有  文献  资讯  行情
 

客服:点击这里给我发消息 点击这里给我发消息
焦化技术  炼铁技术 炼钢技术  烧结技术 球团技术 轧钢技术 国外技术 质量标准 操作规程 企业名录 冶金专利 视频中心 兑换中心 会员单位
您现在的位置:技术文献 >> 炼钢技术 >> 铁水预处理
基于改进CNN-LSTM和RF的铁水KR脱硫预测模型
发表时间:[2024-11-18]  作者:胡佳辉,熊 凌,但斌斌,吴经纬  编辑录入:小锰  点击数:208

内容简介

摘要:为实现较高精度的脱硫剂加入量预测,有效提高生产效益,本文提出一种基于改进卷积神经网络(CNN)-长短期记忆(LSTM)网络和随机森林(RF)结合的铁水脱硫两步预测模型。考虑到模型输入数据的相关性,利用皮尔逊相关系数确定各输入参数的相关性并筛选特征。模型以CNN-LSTM为基础,增加卷积层和残差连接,在提高挖掘数据的高维特征信息的同时避免网络退化。为增加网络对特征的区分和关注能力,引入多头注意力机制,让网络更加关注特征中的重要信息。使用贝叶斯优化RF超参数构建误差预测模型从而实现残差推理,对改进的CNN-LSTM模型预测结果进行修正。以现场采集的数据进行实验,结果表明,与CNN-LSTM模型相比,本文模型的拟合精度R2提升了17.11%,平均绝对值误差MAE降低了24.85%,均方根误差RMSE降低了30.18%,平均绝对百分比误差MAPE降低了28.33%。 关键词:KR脱硫模型;卷积神经网络;长短期记忆网络;注意力机制;随机森林 下载高清全文—基于改进CNN-LSTM和RF的铁水KR脱硫预测模型.pdf

友情提示

文章权限:高级会员
消耗金币:5
此文章需要 高级会员 及以上权限才可阅读!普通会员阅读下载本文档需要登录,并付出相应金币(普通会员注册即赠送20金币)。如何获取金币?
如果您还没有注册,您可以 点此 注册!
如果您已注册还没有登录,您可以在下面登录!
用户名:
密 码:
验证码: 点击换另外一幅
相关文章
热点排行
  • 扫一扫,访问冶金之家
更多友情链接      申请友情链接,请加QQ:1525077243
更多合作单位
版权所有:冶金之家 www.GTjia.com 未经许可不得转载  
客服电话0311-80927349   客服传真0311-80927348  客服邮箱gtjiacom@126.com
客服:点击这里给我发消息  客服:点击这里给我发消息  客服:点击这里给我发消息
[冶金之家QQ群] 炼铁技术交流群:53122098 炼钢技术交流群:116793970
工信部网站备案/许可证号:冀ICP备11014312号-1
免责声明:本站部分内容来自互联网 不承诺拥有其版权 如有异议请联系本站 将在第一时间删除相关内容。