用户名: 密码: 验证码: 点击换另外一幅          客服电话:0311-80927349设为主页  加入收藏  
   所有  文献  资讯  行情
 

客服:点击这里给我发消息 点击这里给我发消息
焦化技术  炼铁技术 炼钢技术  烧结技术 球团技术 轧钢技术 国外技术 质量标准 操作规程 企业名录 冶金专利 视频中心 兑换中心 会员单位
您现在的位置:技术文献 >> 轧钢技术 >> 综合资料
融合半监督学习的小样本条件下热轧带钢力学性能预测
发表时间:[2023-08-01]  作者:刘卓然,郑又宁,陈泓霖,张鹤翔,吴思炜  编辑录入:小锰  点击数:414

内容简介

摘要:基于工业数据的热轧带钢力学性能预测技术可以有效减少热轧过程中带钢性能检测取样频率、缩短交货周期、降低生产成本,然而针对小样本下的数据驱动建模始终是一个建模难题。本文聚焦小样本条件下的热轧带钢力学性能建模问题,基于工业生产过程中产生的数据,采用安全弱监督学习(safeweaklysupervisedlearning,SAFEW)算法为未标记数据添加伪标签,实现训练数据的扩展,采用随机森林算法建立热轧带钢成分、工艺、性能之间对应关系,并通过贝叶斯优化的方法确定随机森林超参数,实现小样本条件下热轧带钢力学性能预测。针对工业应用,本文在此基础上开发了热轧带钢力学性能预测软件,结果显示,融合半监督学习的随机森林算法较普通随机森林算法在小样本热轧带钢力学性能预测方面表现更为优异。经统计,屈服强度和抗拉强度预测值和实测值绝对误差在±30MPa以内的命中率较普通随机森林模型分别提高了6.08%和2.60%,伸长率预测值和实测值绝对误差在±3%以内的命中率较随机森林模型提高了4.78%。 关键词:安全弱监督学习;机器学习;小样本;热轧带钢;力学性能预测 下载高清全文——融合半监督学习的小样本条件下热轧带钢力学性能预测.pdf

友情提示

文章权限:高级会员
消耗金币:5
此文章需要 高级会员 及以上权限才可阅读!普通会员阅读下载本文档需要登录,并付出相应金币(普通会员注册即赠送20金币)。如何获取金币?
如果您还没有注册,您可以 点此 注册!
如果您已注册还没有登录,您可以在下面登录!
用户名:
密 码:
验证码: 点击换另外一幅
相关文章
热点排行
  • 扫一扫,访问冶金之家
更多友情链接      申请友情链接,请加QQ:1525077243
更多合作单位
版权所有:冶金之家 www.GTjia.com 未经许可不得转载  
客服电话0311-80927349   客服传真0311-80927348  客服邮箱gtjiacom@126.com
客服:点击这里给我发消息  客服:点击这里给我发消息  客服:点击这里给我发消息
[冶金之家QQ群] 炼铁技术交流群:53122098 炼钢技术交流群:116793970
工信部网站备案/许可证号:冀ICP备11014312号-1
免责声明:本站部分内容来自互联网 不承诺拥有其版权 如有异议请联系本站 将在第一时间删除相关内容。