用户名: 密码: 验证码: 点击换另外一幅          客服电话:0311-80927349设为主页  加入收藏  
   所有  文献  资讯  行情
 

客服:点击这里给我发消息 点击这里给我发消息
焦化技术  炼铁技术 炼钢技术  烧结技术 球团技术 轧钢技术 国外技术 质量标准 操作规程 企业名录 冶金专利 视频中心 兑换中心 会员单位
您现在的位置:技术文献 >> 烧结技术 >> 综合资料
基于改进BP神经网络的烧结矿FeO含量预测
发表时间:[2023-05-30]  作者:张学锋 ,张功辉 ,周志远 ,闻亦昕 ,张巧玉 ,刘胜歌  编辑录入:小锰  点击数:1377

内容简介

摘要:影响烧结矿FeO含量的因素较多且FeO含量与各因素间呈现非线性关系,预测难度较大。针对烧结矿FeO含量难以直接预测的问题,提出一种Dropout算法与Adam算法和四层BP神经网络相融合的烧结矿FeO含量预测模型。为提高烧结矿FeO含量的预测准确率,结合烧结工艺,选取与烧结矿FeO含量强相关性的烧结机尾断面热成像关键帧的温度特征作为模型的参数输入。利用Dropout算法改善四层BP神经网络结构,Adam算法优化四层BP神经网络的训练过程,进而提高模型的预测精度和泛化能力。试验表明,改进的模型预测烧结矿FeO含量误差值在±0.5、±0.8和±1.0时,命中率分别达到77.42%、88.71%和96.77%。与三层BP神经网络预测模型和支持向量机回归(supportvectorregression,SVR)模型相比,该模型的误差更小,同时预测精度也得到显著提升。 关键词:烧结矿;FeO含量;机尾断面热成像;BP神经网络;Dropout算法;Adam算法 下载高清全文——基于改进BP神经网络的烧结矿FeO含量预测.pdf

友情提示

文章权限:高级会员
消耗金币:5
此文章需要 高级会员 及以上权限才可阅读!普通会员阅读下载本文档需要登录,并付出相应金币(普通会员注册即赠送20金币)。如何获取金币?
如果您还没有注册,您可以 点此 注册!
如果您已注册还没有登录,您可以在下面登录!
用户名:
密 码:
验证码: 点击换另外一幅
相关文章
热点排行
  • 扫一扫,访问冶金之家
更多友情链接      申请友情链接,请加QQ:1525077243
更多合作单位
版权所有:冶金之家 www.GTjia.com 未经许可不得转载  
客服电话0311-80927349   客服传真0311-80927348  客服邮箱gtjiacom@126.com
客服:点击这里给我发消息  客服:点击这里给我发消息  客服:点击这里给我发消息
[冶金之家QQ群] 炼铁技术交流群:53122098 炼钢技术交流群:116793970
工信部网站备案/许可证号:冀ICP备11014312号-1
免责声明:本站部分内容来自互联网 不承诺拥有其版权 如有异议请联系本站 将在第一时间删除相关内容。