用户名: 密码: 验证码: 点击换另外一幅          客服电话:0311-80927349设为主页  加入收藏  
   所有  文献  资讯  行情
 

客服:点击这里给我发消息 点击这里给我发消息
焦化技术  炼铁技术 炼钢技术  烧结技术 球团技术 轧钢技术 国外技术 质量标准 操作规程 企业名录 冶金专利 视频中心 兑换中心 会员单位
您现在的位置:技术文献 >> 炼铁技术 >> 综合资料
基于机器学习和遗传算法的高炉参数预测与优化
发表时间:[2021-08-13]  作者:李壮年,储满生,柳政根,李宝峰  编辑录入:小锰  点击数:3005

内容简介

摘要:针对目前高炉炼铁模型精度不高问题,提出建立高炉生产过程中精确的多目标优化模型.首先对高炉的海量数据进行了数据预处理,其次采用支持向量机、随机森林、梯度提升树、XGBoost、LightGBM、人工神经网络6种机器学习算法对高炉焦比、K值进行了预测,并采用特征工程和超参调优对机器学习预测进行了优化,最后采用新的集成学习方法进行预测.预测结果不仅精准度高而且具有很好的鲁棒性.在机器学习的基础之上,采用NSGA-Ⅱ遗传算法对高炉参数进行了多目标优化分析,得到了Pareto最优解,高炉操作者可以根据该多目标优化结果针对不同的需求选择相应的控制参数.关键词:高炉;机器学习;集成学习;遗传算法;参数预测 下载高清全文——基于机器学习和遗传算法的高炉参数预测与优化.pdf

友情提示

文章权限:高级会员
消耗金币:5
此文章需要 高级会员 及以上权限才可阅读!普通会员阅读下载本文档需要登录,并付出相应金币(普通会员注册即赠送20金币)。如何获取金币?
如果您还没有注册,您可以 点此 注册!
如果您已注册还没有登录,您可以在下面登录!
用户名:
密 码:
验证码: 点击换另外一幅
相关文章
热点排行
  • 扫一扫,访问冶金之家
更多友情链接      申请友情链接,请加QQ:1525077243
更多合作单位
版权所有:冶金之家 www.GTjia.com 未经许可不得转载  
客服电话0311-80927349   客服传真0311-80927348  客服邮箱gtjiacom@126.com
客服:点击这里给我发消息  客服:点击这里给我发消息  客服:点击这里给我发消息
[冶金之家QQ群] 炼铁技术交流群:53122098 炼钢技术交流群:116793970
工信部网站备案/许可证号:冀ICP备11014312号-1
免责声明:本站部分内容来自互联网 不承诺拥有其版权 如有异议请联系本站 将在第一时间删除相关内容。