内容简介 摘要:针对球团链箅机预热段温度场因非线性、时滞性、不确定性等特点难以通过传统的理论分析方法建立数学模型的问题,建立贝叶斯-BP神经网络,对该温度场模型进行系统辨识,对比模型预测输出值与实际系统输出值,通过仿真与实验分析该辨识模型的拟合效果。结果表明:贝叶斯-BP神经网络拟合效果较好,其线性拟合度近似为1,最终预测误差约为0.014K,预测相对误差在5%范围内,构建的预热段温度场模型准确可靠且适用性强,可为预热段温度场均衡稳定控制提供理论指导。关键词:链箅机;温度场模型;系统辨识;贝叶斯-BP神经网络;最终预测误差;预测相对误差下载高清全文——链箅机预热段温度场模型的贝叶斯_BP神经网络系统辨识.pdf
友情提示 文章权限:高级会员 消耗金币:5 此文章需要 高级会员 及以上权限才可阅读!普通会员阅读下载本文档需要登录,并付出相应金币(普通会员注册即赠送20金币)。如何获取金币? 如果您还没有注册,您可以 点此 注册! 如果您已注册还没有登录,您可以在下面登录!
|